227. Cyclic Acetals.
 Structural Analysis of 1,3-Dioxepine and Related Compounds

by Flemming S. Jergensen*
Department of Chemistry BC, Royal Danish School of Pharmacy, Universitetsparken 2, DK 2100 Copenhagen Ø
Michael Gajhede
Department of Physical Chemistry, The H.C. Ørsted Institute, University of Copenhagen, DK-2100 Copenhagen \varnothing
and Bruno Frei
Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16, CH-8092 Zürich

(5.VI.85)

The $\mathrm{He}(1)$ PE spectra of 1,3-dioxepine (1) and the related bicyclic acetals 1,3,7,7-tetramethyl-2,11-dioxabicy-clo[4.4.1]undeca-3,5-dien-10-one (2) and 1,3,7,7-tetramethyl-10-methylidene-2,11-dioxabicyclo[4.4.1]undeca-3,5diene (3) have been recorded and analyzed. Interpretation of the PE data indicate strong orbital interactions between the diene and acetal moieties in 1. Different conformations have been evaluated by a joint MMP2 molecular mechanics and ab initio molecular orbital analysis, which shows 1 to prefer a slightly boat-shaped conformation with the diene part being planar and the CH_{2} group placed considerably out-of-plane. The bicyclic acetals 2 and 3 show a frontier orbital picture similar to 1 superimposed with the characteristics of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ groups, respectively. The crystal structure of the keto-acetal 2 was determined by an X -ray analysis.

Introduction. - Stereoelectronic effects are important in determining both the molecular structure and the reactivity of organic compounds. Especially for molecules containing two or more heteroatoms with non-bonding electron pairs (lone pairs) the structural behavior is often controlled by conformation-dependent destabilizing four-electron interactions, which can be investigated experimentally by photoelectron (PE) spectroscopy [1] [2]. Likewise for molecules containing lone pairs as well as suitably located antibonding orbitals conformational-dependent stabilizing two-electron interactions are possible and may affect the stability and reactivity of the system [3] [4]. Thus, the preference for the gauche arrangement around the $\mathrm{C}-\mathrm{O}$ bonds in acetals, the so-called 'anomeric effect' [3-6], has been attributed to stabilization of the O lone pair into an antiparallel antibonding $\mathrm{C}-\mathrm{O}$ orbital ($\mathrm{n}_{\mathrm{O}} \rightarrow \sigma_{\mathrm{Co}}^{*}$) [7], and the reactivity of acetals (hydrolysis, ozonolysis etc.) has been shown to depend heavily on the conformation around the $\mathrm{C}-\mathrm{O}$ bonds, the preferred arrangement being the O lone pair antiparallel to the reacting bond [4] [8]. Despite this, the amount of theoretical and experimental work reported on the electronic structure of acetals is rather limited [7-13]. Only few acetals have been studied by PE spectroscopy and nearly all these were simple acetals, which contained no other functional groups [11-13].

In the course of our structural work on acetals [13], we have studied the cyclic, conjugated acetal 1,3-dioxepine (1,3-dioxa-4,6-cycloheptadiene; 1) [14] together with the
two related bicyclic acetals 1,3,7,7-tetramethyl-2,11-dioxabicyclo[4.4.1]undeca-3,5-dien-10-one (2) and 1,3,7,7-tetramethyl-10-methylidene-2,11-dioxabicyclo[4.4.1]undeca-3,5diene (3) [15], which besides the dioxepine moiety also contains a $\mathrm{C}=\mathrm{O}$ group and a $\mathrm{C}=\mathrm{C}$ bond, respectively. The interpretation of the PE spectra is supported by ab initio SCF MO calculations [16]. For 1, a joint molecular mechanics (MMP2) [17] and MO analysis has been performed.

1

2

3

Fig. 1. PE spectra of 1-3

1,3-Dioxepine (1). - The PE spectrum of $\mathbf{1}$ is depicted in Fig. 1 and exhibits three low-energy peaks, whose intensities after correction for the variation in spectrometer resolution ($I_{\text {corr }}=I_{\text {obs }} / E_{\text {kin }}$) [18] have a ratio close to $1: 1: 1$, indicating each bond to correspond to a single ionization (cf. Table 1).

Table 1. Verical Ionization Energies (IE ${ }_{\mathrm{v}}$) for 1-3, Determined by PE Spectroscopy ${ }^{\text {a }}$)

Band	1		2		3	
	$J E_{v}$	Rel. area $^{\text {b }}$)	$I E_{v}$	Rel. area ${ }^{\text {b }}$)	$I E_{v}$	Rel. area $^{\text {b }}$)
1	8.33	1.0	7.93	1.0	7.48	1.0
2	10.63	1.0	9.35	0.9	9.27	1.1
3	11.41	1.2	10.35	2.1	9.88	2.2
4	$13.0^{\text {c }}$)	5.1	$\left\{\begin{array}{l}11.2 \mathrm{sh} \\ 11.49\end{array}\right\}$	3.1	$\left\{\begin{array}{l}10.69 \mathrm{sh} \\ 11.17\end{array}\right\}$	5.0
5	15.5 ${ }^{\text {c }}$)	4.2				

${ }^{\text {a }}$) Energies in eV ; sh $=$ shouider. ${ }^{\text {b }}$) The relative area is the ratio between the corrected intensities $=$ observed intensities/kinetic energies (see the text). ${ }^{\text {c }}$) Broad bands, see Fig. l.

The 1,3-dioxepine (1) molecule can be regarded as composed of a butadiene and an acetal fragment and its electronic structure can be derived by evaluation of the interactions between the frontier orbitals of these fragments according to the PMO theory [19]. For the planar $C_{2 \text { s }}$ conformation of $\mathbf{1}$ the molecular orbital correlation diagram is shown in Fig. 2.

The relevant basis orbitals of the diene fragment are the antisymmetric $\left(\pi_{2}\right)$ and symmetric (π_{1}) π-type orbitals. Their separation depends heavily on the conformation around the $\mathrm{C}(2)-\mathrm{C}(3)$ diene bond, but for planar or close-to-planar cisoid-dienes the π, π separation is expected to be close to 2.5 eV [1] [20].

The 1,3-dioxa or acetal fragment contributes with an in-phase and an out-of-phase combination of both the $\mathrm{O} \pi$-type $\left(\mathrm{O}_{2 \mathrm{p}}\right)$ lone pairs $\left[\mathrm{n}_{+}(\pi)\right.$ and $\mathrm{n}_{-}(\pi)$, respectively] and the O σ-type lone pairs $\left[\mathrm{n}_{+}(\sigma)\right.$ and $\mathrm{n}_{-}(\sigma)$, respectively]. Normally, an in-phase combination is

Fig. 2. Molecular-orbital interaction diagram for the combination of the diene and acetal moieties in $\mathbf{1}$. The shapes of the π-type orbitals are visualized by circles reflecting the size of the atomic-orbital coefficients.
placed below the out-of-phase combination [21], but in this case the inverted order is more likely for the π-type combinations due to destabilation of the $n_{+}(\pi)$ combination by interaction with the lower-lying $\pi_{\mathrm{CH}_{2}}$ orbital [22].

The π_{1} and $n_{+}(\pi)$ orbitals both transform as B_{1} and the π_{2} and $n_{-}(\pi)$ orbitals as A_{2}. The symmetry-allowed interactions may be similar in magnitude, since an interaction is proportional to the overlap between the orbitals (larger coefficients on the terminal diene C-atoms in π_{2} than in π_{1}) and inversely proportional to the difference in basis orbital energies $\left(\mathrm{B}_{1}<\mathrm{A}_{2}\right)$. Thus, the highest-occupied orbitals of 1 in the $C_{2 v}$ form are the out-of-phase combinations of the π-type orbitals, $\pi_{2}-\mathrm{n}_{-}(\pi)$ and $\pi_{1}-\mathrm{n}_{+}(\pi)$ followed by a σ-type lone pair, $\mathrm{n}_{-}(\sigma)$.

The search for possible minimum energy conformations of 1 was done using the MMP2 part of Allinger's MM2(82) molecular mechanics program [17] [23] [24], which recently has been reparametrized for acetals [25]. To perform the MMP2 calculations on 1, one additional torsional parameter for the $\mathrm{C}_{\mathrm{sp} 2}-\mathrm{O}-\mathrm{C}_{\mathrm{sp}}{ }^{3}-\mathrm{O}$ moiety was needed. This was assumed identical to the value for the $\mathrm{C}_{\mathrm{sp}^{2}}-\mathrm{O}-\mathrm{C}_{\mathrm{sp}^{3}}-\mathrm{C}_{\mathrm{sp}} 3$ moiety $\left(V_{3}=0.40 \mathrm{kcal} / \mathrm{mol}\right)$ [26].

Application of the MMP2 method to 1 yielded only two minima with the C_{s} conformation placed $10.4 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the C_{2} conformation. The planar ($C_{2 s}$) form of the molecule is energetically placed above both these conformations and it is not a minimum on the potential surface (cf. Table 2).

Table 2. MMP2 and ab-initio-Calculated Energies for 1

Conformation		C_{s}	$C_{2 \mathrm{~b}}$	C_{2}
MMP2 Relative energy ab initio (4-31G)	$[\mathrm{kcal} / \mathrm{mol}]$	0.0	12.3	10.4
Total energy	$[\mathrm{au}]$			
Relative energy	$[\mathrm{kcal} / \mathrm{mol}]$	-341.976	-341.964	-341.967
Orbital energies $\left.{ }^{\mathrm{a}}\right)$	$[\mathrm{eV}]$	-8.0	7.2	5.7
		$-11.5\left(11 \mathrm{a}^{\prime \prime}\right)$	$-8.1\left(2 \mathrm{a}_{2}\right)$	$-8.7(14 \mathrm{a})$
		$-13.3\left(10 \mathrm{a}^{\prime \prime}\right)$	$-10.8\left(3 \mathrm{~b}_{1}\right)$	$-10.9(12 \mathrm{~b})$
	$-13.5\left(14 \mathrm{a}^{\prime}\right)$	$-13.7\left(9 \mathrm{~b}_{2}\right)$	$-12.5(11 \mathrm{~b})$	
		$-13.9\left(13 \mathrm{a}^{\prime}\right)$	$-13.7\left(12 \mathrm{a}_{1}\right)$	$-13.3(13 \mathrm{a})$

${ }^{\text {a }}$ The symmetries of the MO's are quoted in parenthesis.

The C_{s} conformation is boat-shaped with the 'stern' (the diene $\mathrm{C}(5)-\mathrm{C}(6)$ bond) and the 'bow' (the acetal C -atom, $\mathrm{C}(2)$) tilted 18° and 62°, respectively, relative to the main plane of the molecule $(\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$, cf. Fig.3). The torsional angles around the $\mathrm{O}(1)-\mathrm{C}(2)$ and $\mathrm{C}(2)-\mathrm{O}(3)$ bonds are calculated as $\pm 74^{\circ}$, i.e. a gauche $(+)$, gauche $(-)$ arrangement, which is a relatively favored acetal conformation [3] [22]. The boat shape of the molecule forces the torsional angle around the $\mathrm{C}(4)-\mathrm{C}(5)$ double bond to be distorted by $+22^{\circ}$.

In the C_{2} conformation the diene unit is considerably twisted $\left(+33^{\circ}\right)$, the double bond $(\mathrm{C}(4)-\mathrm{C}(5))$ is slightly distorted $\left(+12^{\circ}\right)$ and the torsional angle about the $\mathrm{O}(3)-\mathrm{C}(4)$ bond assumes a value of -76°. The acetal fragment exhibits a somewhat flattened gauche $(+)$, gauche $(+)$ arrangement with torsional angles on $+43^{\circ}$ about the $\mathrm{O}(1)-\mathrm{C}(2)$ and $\mathrm{C}(2)-\mathrm{O}(3)$ bonds.

Fig. 3. Computer-generated drawings of the C_{s} (left) and C_{2} (right) conformations of 1
Using the MMP2-optimized structures of 1 we then performed ab initio 4-31G MO calculations [16]. The total energy (cf. Table 2) determined for the C_{s} form, is 5.7 $\mathrm{kcal} / \mathrm{mol}$ below the energy for the C_{2} form, in agreement with the MMP2 results.

For the parent seven-membered ring system, 1,3-cycloheptadiene (4), several experimental and theoretical studies with contradictory conclusions have been reported [27], but both electron diffraction [28] and microwave spectroscopy [27] agree on the molecular structure of $\mathbf{4}$ being a C_{s} form with only the CH_{2} group tilted 73° out-of-plane with the rest of the molecule. Recent MMP2 and ab initio studies of 4 find the C_{s} form to be favoured by $2.07 \mathrm{kcal} / \mathrm{mol}$ [29] and $2.5 \mathrm{kcal} / \mathrm{mol}$ [30], respectively, relative to the C_{2} form.

4

5

6

Boat conformations similar to the C_{s} conformation of 1,3-dioxepine (3) (cf. Fig.3) have also been observed for the sulfur analog 1,3-dithiepine (5), which by X-ray crystallography has been shown to adopt a C_{s} boat conformation with 'stern' and 'bow' values being 3° and 73°, respectively [31]. Other seven-membered ring systems, e.g. 1,3,5-cycloheptatriene (6) [32], have shown similar behavior.

Finally, the frontier orbital picture obtained from the ab initio study confirms the previously discussed PMO considerations. Comparison of the ab initio energy levels of the C_{s} and C_{2} forms (cf. Table 2) with the PE data does not allow a definite answer concerning the preferred molecular conformation.

Molecular Structure of the Bicyclic Acetals 2 and 3. - Both the bicyclic acetals 2 and $\mathbf{3}$ are examples of anti-Bredt compounds, i.e. bridgehead olefins, which often are assumed to be relatively strained [33]. But in the C system being relevant for comparison with 2 and 3, the bicyclo[4.4.1]undec-1-ene system [34], molecular mechanics calculations estimate
the 'olefinic strain' to be close to zero'), which means that no extra strain is added by the introduction of the double bond in the 1-position of the bicyclo[4.4.1]undecane framework [35].

To obtain more detailed information about the overall conformation of $\mathbf{2}$ and $\mathbf{3}$ as well as distortions caused by the presence of a dioxepine moiety in such a relatively rigid bicyclic framework, we have determined the molecular structure of the keto-acetal 2 by X-ray crystallography.

Abstract

X-Ray Analysis of 2. - The crystals of 2, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$, are orthorhombic, space group $\mathrm{P}_{2} 2_{1} 2_{1}$, with cell dimensions $a=7.872(2) \AA, b=12.015(6) \AA, c=12.250(4) \AA, Z=4, d$ (calc) $=1.274 \mathrm{~g} / \mathrm{cm}^{3} . \mathrm{A}$ total f 4070 reflections were collected at 105 K (Enraf-Nonius CAD-4, graphite monochromator, MoK α radiation, $\omega / 2 \theta$, $\left.1.0^{\circ}<\theta<37.5^{\circ}\right)$. Data reduction yielded 2510 independent reflections with $I>2 \sigma(I)$. Final refinement gave $R=0.045$ and $R_{w}=0.051$. Further details, tables of atomic coordinates and thermal parameters as well as tables of bond lengths, bond angles and torsional angles have been submitted as Supplementary Material.

Fig. 4. ORTEP [49] drawing of the molecular structure of 2. Thermal ellipsoids are drawn at the 50% probability level and H -atoms represented by spheres.

Examination of the torsional angles and the three-dimensional representation (Fig. 4) reveal that in 2 the dioxepine ring is somewhat distorted compared with the boat conformation suggested for 1 . The diene unit is twisted by 21° and the acetal conformations can be considered as being a distorted $\left(+95^{\circ},-55^{\circ}\right)$ gauche $(+)$, gauche $(-)$ conformation. The acetal bond lengths differ by $0.010(2) \AA$, and the difference is in qualitative agreement with theoretical considerations. A stereoelectronic effect like the 'anomeric effect' involving stabilizing $\mathrm{n}_{\mathrm{O}} \rightarrow \sigma_{\mathrm{CO}}^{*}$ interactions has a twofold torsional dependence with a minimum contribution for an orthogonal (90°) arrangement, and deviation from this arrangement increases the $\mathrm{n}_{\mathrm{O}} \rightarrow \sigma_{\mathrm{CO}}^{*}$ interactions and the $\mathrm{C}-\mathrm{O}$ bond is shortened [36]. Accordingly, the $\mathrm{C}(1)-\mathrm{O}(2)$ bond (1.413(2) \AA) associated with a torsional angle of -55° is shorter than the $\mathrm{C}(1)-\mathrm{O}(11)$ bond (1.423(2) \AA) with the torsional angle of $+95^{\circ}$.

A search of the Cambridge Structural Database (January 1984 version with 40,489 entries [37]) revealed only three molecules containing the 1,3 -dioxepine ring system. Two of these were derivatives of cercosporin 7 (a: $R=R^{\prime}=\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$; b: $\left.\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OCOCH}_{3}\right) \mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OCOPh}) \mathrm{CH}_{3}\right)$ [38] [39] and the third was an o, o^{\prime}-bridged biphenyl derivative $\left.8\left(\mathrm{R}=\mathrm{OCH}_{3}, \mathrm{R}^{\prime}=t-\mathrm{Bu}\right)[40]^{2}\right)$. Unfortunately, the molecular framework in $\mathbf{7}$ as well as $\mathbf{8}$ determines the conformation of the 1,3-dioxepine

[^0]

7

8
ring. The perylenequinone part of 7 prefers planarity and heavily restricts the flexibility of the seven-membered ring. Accordingly, the observed conformation of the 1,3-dioxepine ring in 7 is boat-shaped with only the CH_{2} group placed out of the main plane of the molecule [39]. In case of 8, the three-atom bridge between the o, o^{t}-positions of the biphenyl moiety twists the molecule and forces the seven-membered ring to assume a C_{2} conformation [40]. The quality of the data for 7 and 8 does not allow a detailed comparison of bond lenghts and bond angles with our low-temperature structure of the ketoacetal 2.

The saturated ring of $\mathbf{2}$ is a relatively flexible seven-membered ring in a distorted boat conformation [41] with the $\mathrm{C}=\mathrm{O}$ bond and the $\mathrm{C}=\mathrm{C}$ bond $(\mathrm{C}(5)-\mathrm{C}(6))$ arranged nearly parallel. The crystal packing exhibits no intermolecular distances shorter than the sum of the van der Waals radii.

Electronic Structure of 2 and 3. - The PE spectrum of 2 (Fig. 1) contains four peaks below 12 eV , the latter peak being accompanied by a shoulder on the low-energy side (estimated to 11.2 eV). The ratio between the corrected areas of the four peaks indicates the first two peaks to correspond to a single ionization each and the third and fourth to correspond to two and three ionizations, respectively.

The PE spectrum of $\mathbf{3}$ (Fig.1) is similar in appearance to the PE spectrum of 2, as expected for compounds having nearly identical structures, and exhibits four low-energy peaks with a ratio close to $1: 1: 2: 4$. In this case a distinct shoulder can be located on the low-energy side of the fourth peak. The PE-spectroscopically-determined ionization energies and the corresponding relative areas for $\mathbf{2}$ and $\mathbf{3}$ are collected in Table 1.

For acetone, the ionization corresponding to the $\mathrm{C}=\mathrm{O}$ lone pair $\left(\mathrm{n}_{\mathrm{C}=0}\right)$ is found at 9.71 eV [42]. Increasing the molecular framework lowers the lone-pair ionization energy to 9.14 eV in cyclohexanone [43], and for more heavily substituted ketones values of 8.6-8.9 eV have been reported [44] [45]. Contrary to this, introduction of electronegative atoms near the $\mathrm{C}=\mathrm{O}$ group increases the $\mathrm{n}_{\mathrm{C}-\mathrm{o}}$ ionization energy by inductive stabilization of the lone-pair orbital [19]. Considering 2 as a heavily substituted ketone and associating an inductive shift of $0.2-0.4 \mathrm{eV}$ for each O -atom introduced in a β (allylic) position to the $\mathrm{C}=\mathrm{O}$ group [46] [47], the ionization at 9.35 eV can be assigned to the $\mathrm{C}=\mathrm{O}$ lone pair ($\mathrm{n}_{\mathrm{C}-0}$).

Similar arguments can be applied to exocyclic CH_{2} compounds, here the $\pi_{\mathrm{C}-\mathrm{CH}_{2}}$ ionization is found at 9.13 eV in methylenecyclohexane [48] and as low as 8.86 eV in heavily substituted derivatives [45] [47] [48]. This enables us to assign the 9.27 eV ionization of 3 to the $\pi_{\mathrm{C}=\mathrm{CH}_{2}}$ orbital.

Having assigned the $\mathrm{n}_{\mathrm{C}=\mathrm{O}}$ and $\pi_{\mathrm{C}=\mathrm{CH}}$ ionizations in 2 and 3 , respectively, we can correlate the remaining ionizations of $\mathbf{2}$ and $\mathbf{3}$ as shown in Fig. 5.

Fig. 5. Correlation diagram for 1,3-cycloheptadiene (4) [50], 1,3-dioxepine (1) and the bicyclic acetals 2 and 3 based on observed ionization energies

From Fig. 5 it can be concluded that for both 2 and 3, the lowest ionization energy corresponds to ionization from the out-of-phase combination of the 'antisymmetric' diene π orbital and the 'antisymmetric' acetal lone pair combination $\left.{ }^{3}\right)$, i.e. the $\pi_{2}-\mathrm{n}_{-}(\pi)$ orbital in $\mathbf{1}$.

The second ionization energy has already been assigned to $\mathrm{n}_{\mathrm{C}=0}$ orbital in 2 and the $\pi_{\mathrm{C}=\mathrm{CH}_{2}}$ orbital in 3, respectively, and the third ionization energy corresponds to the two degenerate orbitals, the out-of-phase combination of the 'symmetric' basis orbitals (π_{1} and $n_{+}(\pi)$) and a combination of the σ-type O lone pairs resembling the $\mathrm{n}_{-}(\sigma)$ orbital of 1 .

Fig. 5 also shows that the extension of the molecular framework $(\mathbf{1} \rightarrow \mathbf{2})$ effects the σ-type orbitals three times as much as the π-type orbitals ($\Delta \sigma \approx 1.1 \mathrm{eV}$ and $\Delta \pi \approx 0.35$ eV) suggesting the destabilization to be caused by a hyperconjugative mechanism. On the contrary the shifts for the transformation $\mathbf{3} \boldsymbol{\rightarrow 2}$ are nearly identical for both types of orbitals ($\Delta \sigma \approx \Delta \pi \approx-0.5 \mathrm{eV}$) suggesting a purely inductive mechanism.

In conclusion, the electronic structure of the bicyclic acetals $\mathbf{2}$ and $\mathbf{3}$ resembles that of 1,3-dioxepine (1) superimposed with the characteristics of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ groups, respectively, although the dioxepine parts of $\mathbf{2}$ and $\mathbf{3}$ are somewhat distorted relative to the C_{s} boat conformation found for 1 .

We are grateful to the Danish Natural Science Research Council for financial support (11-1837 and 11-2360), to the Swiss National Science Foundation for financial support to B. F., to Flemming Hansen (University of Copenhagen) for technical assistance, and to Rita Hazell (University of Århus) for making unpublished results available for us.

Experimental. .-. The compounds were prepared as described in [14] [15]. Purities were checked by ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR spectroscopy (1,2, and 3) and GC (1) before recording the PE spectra. The PE spectra were recorded on a PS-18 spectrometer (Perkin-Elmer) at Department of General and Organic Chemistry, University of Copenhagen with a $\mathrm{He}(\mathrm{I})$ source and calibrated with a mixture of Ar and Xe introduced into the target chamber simultancously with the sample. The recording temp. for $1-3$ were r.t. (gas inlet), $40-42^{\circ}$ and 28° (heated inlet), resp. The exper. resolution was 30 meV and the reported ionization energies are averages of four determinations.

[^1]
REFERENCES

[1] R.S. Brown, F.S. Jargensen, in 'Electron Spectroscopy. Theory Techniques and Applications', Eds. C. R. Brundle and A.D. Baker, Academic Press, New York, 1984, Vol. V, p. 1.
[2] M. Klessinger, P. Rademacher, Angew. Chem. 1979, 91, 885; ibid. Int. Ed. 1979, 18, 826.
[3] A. J. Kirby, 'The Anomeric Effect and Related Stereoelectronic Effects at Oxygen’, Springer-Verlag, Berlin, 1983.
[4] P. Deslongchamps, 'Stereoelectronic Effects in Oganic Chemistry', Pergamon Press, Oxford, 1983.
[5] R. U. Lemieux, S. Kato, Tetrahedron 1974, 30, 1933.
[6] W. A. Szarek, D. Horton, Eds., 'Anomeric Effect. Origin and Consequences', ACS Symposium Series 87, American Chemical Society, Washington, 1979.
[7] S. Wolfe, M.-H. Whangbo, D. J. Mitchell, Carbohydr. Res. 1979, 69 , 1; S. David, O. Eisenstein, W. J. Hehre, L. Salem, R. Hoffmann, J. Am. Chem. Soc. 1973, 95, 3806.
[8] G. Wipff, Tetrahedron Lett. 1978, 3269.
[9] I. Tvaroska, T. Bleha, Can. J. Chem. 1979, 57, 424.
[10] See [3] for leading references. See also F. Longchambon, H. Gillier-Pandraud, R. Wiest, B. Rees, A. Mitschler, R. Feld, M. Lehmann, P. Becker, Acta Crystallogr., Sect. B 1985, 41, 47.
[11] D. A. Sweigart, D. W. Turner, J. Am. Chem. Soc. 1972, 94, 5599; V.V. Zerev, J. Villem, N. Villem, N. E. Klimovitskii, B. A. Arbuzov, Zh. Obshch. Khim. 1982, 52, 1888; R. Gleiter, R. Haider, H. Quast, J. Chem. Res. (S) 1978, 138.
[12] H. J. Ammann, Ph. D. Dissertation 6732, ETH Zürich, 1980.
[13] a) F.S. Jørgensen, J. Chem. Res. (S) 1981, 212; b) F.S. Jørgensen, L. Nørskov-Lauritsen, R. B. Jensen, G. Schroll, Tetrahedron 1981, 37, 3671; c) F.S. Jørgensen, L. Nørskov-Lauritsen, Teirahedron Lett. 1982, 23, 5221.
[14] J.F.W. Keana, R.H. Morse, Tetrahedron Lett. 1976, 2113.
[15] B. Frei, G. de Weck, K. Müllen, H. R. Wolf, O. Jeger, Helv. Chim. Acta 1979, 62, 553.
[16] J. S. Binkley, R. A. Whiteside, R. Krishnan, R. Sceger, D. J. DeFrees, H. B. Schlegel, S. Topiol, L. R. Kahn, J.A. Pople, 'GAUSSIAN 80. An Ab Initio Molecular Orbital Program', Carnegie-Mellon University, Pittsburgh, PA 15213. GAUSSIAN 80 is available from Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN 47405.
[17] U. Burkert, N.L. Allinger, 'Molecular Mechanics', American Chemical Society, Washington, 1982, and references therein.
[18] J. W. Rabalais, 'Principles of Ultraviolet Photoelectron Spectroscopy', Wiley, New York, 1977, p. 39.
[19] I. Fleming, 'Frontier Orbitals and Organic Reactions', John Wiley \& Sons, New York, 1976.
[20] C. Batich, P. Bischof, E. Heilbronner, J. Electron Spectrosc. Related Phenom. 1972/73, 1, 333, and references therein.
[21] R. Hoffmann, Acc. Chem. Res. 1971, 4, 1.
[22] F.S. Jørgensen, unpublished results. See also [13c].
[23] N. L. Allinger, J. Am. Chem. Soc. 1977, 99, 8127.
[24] Molecular Design Ltd., 2132 Farollon Drive, San Leandro, California 84577.
[25] L. Nørskov-Lauritsen, N. L. Allinger, J. Comput. Chem. 1984, 5, 326.
[26] H. Dodzivk, H. von Voithenberg, N. L. Allinger, Tetrahedron 1982, $38,2811$.
[27] T. K. Avirah, T. B. Malloy, Jr., R. L. Cook, J. Chem. Phys. 1979, 71, 2194, and references therein.
[28] J.F. Chiang, S. H. Bauer, J. Am. Chem. Soc. 1966, 88, 420; K. Hagen, M. Traetteberg, Acta Chem. Scand. 1972, 26, 3643.
[29] N. L. Allinger, J.T. Sprague, unpublished results, cf. [17] p. 130. See also U. Burkert, N. L. Allinger, J. Comput. Chem. 1982, 3, 40.
[30] S. Saebø, J. E. Boggs, J. Mol. Struct. 1982, 87, 365.
[31] G.A.P. Dalgaard, R.G. Hazell, unpublished results. Reported on the 16th Danish Meeting for Crystallographers, 1980.
[32] M. Traetteberg, J. Am. Chem. Soc. 1964, 86, 4265.
[33] A. Greenberg, J. F. Liebman, 'Strained Organic Molecules', Academic Press, New York, 1978, chapter 3E and 3 F , and literature cited therein.
[34] K. B. Becker, J. L. Chappuis, Helv. Chim. Acta 1979, 62, 34.
[35] W. F. Maier, P. von R. Schleyer, J. Am. Chem. Soc. 1981, 103, 1891.
[36] L. Radom, W.J. Hehre, J. A. Pople, J. Am. Chem. Soc. 1972, 94, 2371; G. A. Jeffrey, J. H. Yates, J. Am. Chem. Soc. 1979, 101,820 . See also discussion in [3] p. 62-72.
[37] F.H. Allen, S. Bellard, M. D. Brice, B. A. Cartwright, A. Doubleday, H. Higgs, T. Hummelink, B. G. Hummelink-Peters, O. Kennard, W.D.S. Motherwell, J. R. Rodgers, D. G. Watson, Acta Crystallogr., Sect. B 1979, 35, 2331.
[38] D. Mentzafos, A. Terzis, S.E. Filippakis, Cryst. Struct. Commun. 1982, 11. 71.
[39] G. Nasini, L. Merlini, G.D. Andreetti, G. Bocelli, P. Sgarabotto, Tetrahedron 1982, 38, 2787.
[40] F. R. Hewgill, C. L. Raston, A. H. White, Aust. J. Chem. 1979, 32, 881.
[41] See [17] p. 98-100 and references therein.
[42] W.-C. Tam, D. Yee, C.E. Brion, J. Electron Spectrosc. Related Phenom. 1974, 4, 77.
[43] D. Chadwick, D. C. Frost, L. Weiler, Tetrahedron Lett. 1971, 4543.
[44] W. Schäfer, H. Schmidt, A. Schweig, R. W. Hoffmann, H. Kurz, Tetrahedron Lett. 1974, 1953; M. N. Paddon-Row, H. K. Patney, R. S. Brown, Aust. J. Chem. 1982, 35, 293; R.S. Brown, Can. J. Chem. 1975, 53, 2446.
[45] C. Worrell, J. W. Verhoeven, W. N. Speckamp, Tetrahedron 1974, $30,3525$.
[46] R. S. Brown, Can. J. Chem. 1976, 54, 805.
[47] R.S. Brown, R. W. Marcinko, J. Am. Chem. Soc. 1978, 100, 5721.
[48] P. Asmus, M. Klessinger, Tetrahedron 1974, 30, 2477.
[49] C.K. Johnson, 'ORTEP-II. A Fortran Ellipsoid Plot Program for Crystal Structure Illustrations', Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, 1976.
[50] P. Bischof, R. Gleiter, E. Heilbronner, Helv. Chim. Acta 1970, 53, 1425; P. Bischof, E. Heilbronner, ibid. 1970, 53, 1677.

[^0]: ${ }^{1}$) The 'olefinic strain' for bicyclo[4.4.1]undec-1-ene is in fact negative ($-1.5 \mathrm{kcal} / \mathrm{mol}$), which means that it is a so-called 'hyperstable' olefin, i.e. an olefin which is less strained than the parent hydrocarbon [35].
 ${ }^{2}$) The reference codes for the retrieved structures are: 7a BERPUJ, 7b BOBFUT, and 8 TBSHDX [37].

[^1]: ${ }^{3}$) The classifications 'symmetric' and 'antisymmetric' have been maintained to illustrate the resemblance of the orbitals of $\mathbf{2}$ and $\mathbf{3}$ with the orbitals of the parent compound $\mathbf{1}$.

